Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression
نویسندگان
چکیده
In this paper, we apply the ideas from [2] to investigate the effect of some semantic based guidance to the crossover operator of GP. We conduct a series of experiments on a family of real-valued symbolic regression problems, examining four different semantic aware crossover operators. One operator considers the semantics of the exchanged subtrees, while the other compares the semantics of the child trees to their parents. Two control operators are adopted which reverse the logic of the semantic equivalence test. The results show that on the family of test problems examined, the (approximate) semantic aware crossover operators can provide performance advantages over the standard subtree crossover adopted in Genetic Programming.
منابع مشابه
Semantic Similarity based Crossover in GP for Real-valued Function Regression
In this paper we propose a new method for implementing the crossover operator in Genetic Programming (GP) called Semantic Similarity based Crossover (SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20]. SSC extends SAC by adding semantics to control the change of the semantics of the individuals during the evolutionary process. The new crossover operator is then tested on...
متن کاملSemantics Based Mutation in Genetic Programming: the Case for Real-valued Symbolic Regression
In this paper we propose two new methods for implementing the mutation operator in Genetic Programming called Semantic Aware Mutation (SAM) and Semantic Similarity based Mutation (SSM). SAM is inspired by our previous work on a semantics based crossover called Semantic Aware Crossover (SAC) [19] and SSM is an extension of SAM by adding more control on the change of semantics of the subtrees inv...
متن کاملSemantic Similarity Based Crossover in GP: The Case for Real-Valued Function Regression
In this paper we propose a new method for implementing the crossover operator in Genetic Programming (GP) called Semantic Similarity based Crossover (SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20]. SSC extends SAC by adding semantics to control the change of the semantics of the individuals during the evolutionary process. The new crossover operator is then tested on...
متن کاملThe Role of Syntactic and Semantic Locality of Crossover in Genetic Programming
This paper investigates the role of syntactic locality and semantic locality of crossover in Genetic Programming (GP). First we propose a novel crossover using syntactic locality, Syntactic Similarity based Crossover (SySC). We test this crossover on a number of real-valued symbolic regression problems. A comparison is undertaken with Standard Crossover (SC), and a recently proposed crossover f...
متن کاملA Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process
Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...
متن کامل